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The effect of isothermal exposure at 500 ~ C on the transverse mechanical properties of 30 and 
50 vol % continuous boron-fibre reinforced 1100 aluminium composites has been investigated. 
Experimental results indicate that the fibre-matrix interfacial reaction gives rise to an increase 
in the fibre-matrix bond strength. Consequently, the fracture mode undergoes a transition 
from interfacial debonding to fibre splitting with increasing exposure time. The fracture sur- 
faces and fibre-matrix interfaces have been studied by scanning electron microscopy and the 
observations coincide with the above interpretation of the mechanical test results. Finally, a 
new theoretical model using Eshelby's theory is developed to analyse the stress-strain behav- 
iour of a continuous fibre reinforced metal matrix composite subjected to transverse tensile 
loading. 

1. Introduction 
Continuous fibre reinforced metal matrix composites 
(MMCs) are generally considered to be attractive as 
structural engineering materials because of their 
superiority to polymer-matrix composites for high 
temperature use as well as their outstanding specific 
stiffness and strength. Since these attractive properties 
are displayed in the longitudinal direction of the 
reinforcing fibre, emphasis has been placed on the 
enhancement of the longitudinal stiffness (EL), 
strength (auL) and toughness (Tv) [1]. Thus, it has been 
known that OUL and 7v in particular are strongly affec- 
ted not only by the fibre volume fraction but also by 
the structure of the fibre-matrix interface, which is 
itself affected by the thermal history of the MMC 
during fabrication and/or subsequent service. That is, 
too strong a fibre-matrix bond coupled with a reduc- 
tion of the fibre strength due to the fibre-matrix 
reaction is found to cause remarkable reductions in 
at:L and 7v [1-3]. 

On the other hand, higher values of the transverse 
strength (arT), which are considered to depend on the 
fibre-matrix bond strength as well as the mechanical 
properties of the matrix itself [1], are very desirable for 
some applications. Unfortunately, the requirements 
for aUL and ~)F of a continuous fibre MMC often con- 
flict with those for at:T. Therefore, a study on the 
transverse properties of the composite is equally 
important from the design point of view. Several 
studies have been made concerning the transverse 

properties of MMCs [3-10]. For example, Adams and 
co-workers [4, 5] analysed both elastic and inelastic 
transverse tensile behaviour of a MMC microscopi- 
cally by the finite element method, and Linet  al. [6] 
related the auT to the fibre volume fraction for MMCs 
with two different fibre-matrix bond strengths. How- 
ever, no attempt has been made to correlate the trans- 
verse tensile properties and stress-strain behaviour to 
the fibre-matrix interfacial reaction at elevated tem- 
perature except for the work of Amateau and Dull [7]. 

In this paper we will report on the room-temperature 
values of auL and auT of a continuous fibre reinforced 
MMC subjected to isothermal high temperature ex- 
posure. Based on the present experimental results, 
we attempt to analyse the transverse tensile stress- 
strain behaviour of the composite using Eshelby's 
theory [11]. 

2. Experimental procedure 
2.1. Materials 
Unidirectional boron fibre reinforced aluminium com- 
posites (B-A1 composites) were obtained as sheet 
panels from AVCO Specialty Materials Division 
(Lowell, Massachusetts). The 8-ply panels were dif- 
fusion-bonded using a proprietary technique. The 
boron fibre used in this study is 102/~m in diameter 
and the volume fractions of the composites are 0.3 and 
0.5. 1100 aluminium was selected as the matrix alloy 
in order to avoid as far as possible the presence of any 
second phase or precipitate particles in the matrix, 
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such as occur in typical aluminium alloys and which 
might affect aUL and trUT, particularly GUT, after the 
isothermal exposure. The mechanical properties of 
both constituents are trru = 3.52 GPa, Ef = 400 GPa 
and vf = 0.21 [12] for boron fibre and trmu = 
89.6MPa, E m =  69GPa,  try = 35MPa and Vm = 
0.33 for 1100 aluminium, where triu, Ei and vi are 
ultimate tensile strength, Young's modulus and Poiss- 
on's ratio of  the i phase (i = f or m), respectively, and 
try is tensile yield stress of  the matrix. 

2.2. I so thermal  exposure 
B-AI  test coupons were exposed to 500~ in argon 
for times (t) of l, 8, 24 or 72 h. Although 500~ is 
considerably higher than any conceivable temperature 
which might be met in service, this temperature was 
chosen as it is known to be sufficient to cause marked 
changes in the longitudinal tensile properties of the 
composite and should allow rapid formation of f ibre- 
matrix interfacial reaction products [2, 13]. 

2.3. Tensile tests of composites  
Both longitudinal and transverse tensile tests were 
carried out on as-fabricated as well as isothermally 
exposed composites. Specimens for longitudinal tests 
were 152.4mm long, 12.7ram wide and 1.27mm 
thick for Vf = 0.3 and 0.88mm thick for Vf = 0.5, 
respectively, and those for transverse tensile tests dif- 
fered only by being 25.4 mm wide. Strain gauges were 
mounted to the middle of  the gauge length (76.2 mm), 
and aluminium end-tabs were adhesively bonded to 
each side of the specimen in the grip area. All tests 
were conducted at room temperature by using a 
standard Instron machine at a strain rate of  6.7 x 
10-3 min -1" 

2.4. Scanning electron microscopy 
The fracture surfaces of the B-A1 composite after the 
tensile tests, and the surface morphology of  fibres 
extracted from both the as-fabricated and isother- 
mally exposed composites, were observed using a 
Philips 501 scanning electron microscope (SEM). 

2.5. Hardness measurements 
In order to investigate the effect of isothermal expo- 
sure on the yield stress and tensile strength of the 
matrix itself, microhardness tests were carried out 
using a Vickers microhardness tester and a load of 
10 g. Care was taken to ensure that the position of the 
hardness impression was as far as possible from the 
fibres or the reaction zone. Five hardness measure- 
ments were taken for each exposure time and statisti- 
cal data such as the mean value, standard deviation 
and coefficient of  variation were obtained. 

3. Results and discussion 
The longitudinal ( t rue)  and transverse (truT) tensile 
strengths are plotted as a function of exposure time (t) 
in Figs 1 and 2, respectively, where open symbols and 
vertical lines denote the mean values and band of 
scattered data, respectively. It can be seen from Figs 1 
and 2 that truL decreases beyond t --- 8 h, while truT 
increases gradually with t, In order to aid in explaining 
the above observation, the fracture surfaces of both 
longitudinally and transversely tested coupons were 
examined by SEM and typical fractographs and 
shown in Figs 3 and 4. As the exposure time is in- 
creased, the fracture surfaces of longitudinally tested 
coupons tend to become flatter with less fibre pull-out, 
while in transversely tested coupons fibre splitting 
becomes dominant. These observations reveal that 
the f ibre-matrix bond strength increased due to the 
chemical reaction between the two constituents with 
increasing exposure time. 

Based on the analytical work of  Mikata and Taya 
[14], circumferential cracks can form in the brittle 
reaction layer of  longitudinally tested coupons due to 
the high tensile stress along the fibre axis, resulting in 
a loss of  the longitudinal strength. In the case of 
transversely tested coupons, the high circumferential 
stress in the reaction layer can cause a splitting type 
crack. Once the splitting type crack has occurred in 
the reaction layer during transverse tensile loading, it 
can propagate further into the fibre, thus causing fibre 
splitting or interfacial debonding. The surfaces of  
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Figure 1 Longitudinal strength 
(aUL) of thermally exposed B-A1 
as a function of exposure time (t) 
at 500 ~ C. (O) Vf = 0.3, (,x) Vf = 
0.5. 
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Figure2 Transverse strength (GUT) of 
thermally exposed B-A1 as a function of 
exposure time (t) at 500 ~ C. (o) Vf = 0.3, 
(~) vf = 0 . 5 .  

fibres extracted from as-fabricated and thermally 
exposed composites are shown in Fig. 5. The latter 
surface was covered with small angular crystals which 
were identified by X-ray diffraction techniques mainly 
as AIB2 [1, 2, 15]. 

The transverse tensile stress-strain curves of  B-A1 
composites are plotted as a function of exposure time 
in Fig. 6, where the symbols denote the fracture points 
of composites subjected to different exposure times. It 
is to be noted that the stress-strain curves exhibit two 
stages, linear and non-linear, and the curve is more 
likely to rise as the exposure time is increased, except 
for the as-fabricated case. 

The results of  microhardness testing of  the matrix 
are plotted in Fig. 7, where open symbols and vertical 
lines denote the mean values and band of  scattered 
data, respectively. It can be seen from Fig. 7 that the 
microhardness, which is related to the flow stress of  
the matrix, decreases for the shorter exposure time 
and then increases slightly for longer exposure time. 
The reason that the flow stress of  the as-fabricated 
matrix metal is relatively high is due to the work 
hardening during the fabrication process [16]. 

The above dependence of  the matrix flow stress on 

the exposure time t can explain partially the trend of  
the stress-strain curves in Fig. 6. It is also noted from 
Fig. 6 that the fracture strain, er, of  Vr = 0.5 com- 
posite is much smaller than that of Vr = 0.3 com- 
posite. This can be explained as follows. In the 
Vf = 0.5 composite, the volume fraction of brittle 
phases (fibres with or without a reaction zone) is larger 
and mini-cracks are more likely to be formed in the 
brittle phases at higher applied stress. Once these 
cracks are formed, they can propagate easily with 
increasing applied stress, resulting in the coalescence 
of  these mini-cracks, and followed by the final fracture 
of  the composite. The volume fraction of  the ductile 
phase (matrix metal), which would serve as a crack 
arrester, is smaller in the Vf = 0.5 composite and, 
hence, the fracture strain is lower. 

4. Analyt ical  studies 
An attempt is made to construct analytical models to 
explain the trend of  the transverse stress-strain curves 
of  B-A1 composites. 

The transverse tensile stress-strain curves of B-AI  
composites show two stages, linear and non-linear as 
described in the previous section. In the linear stage, 

Figure 3 SEM photographs of the fracture surfaces of the longitudinally tensile tested B-AI for (a) as-fabricated and (b) exposed at 500 ~ C 
for 72 h. 
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Figure 4 SEM photographs ol  the fracture surfaces of  the transversely tensile tested B A1 for (a) as-fabricated and (b) exposed at 500 ~ C 
for 72 h. 

Figure 5 SEM photographs of the surfaces of  boron fibres extracted from the composites for (a) as-fabricated and (b) exposed at 500 ~ C for 
72h. 
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Figure 6 Stress-s t ra in  curves obtained experimentally after differ- 
ent isothermal exposure times for (a) Vf = 0.3 and (b) Vf = 0.5. (O) 
As-fabricated, (rn) 1 h, (zx) 8h ,  (o)  24h,  (el) 72h.  

the fibre-matrix interface is considered to be perfectly 
bonded and both matrix and fibre deform elastically 
under the applied stress a ~ However, the slopes of the 
linear stage for B-A1 composites exposed for different 
times do not coincide except for the initial part of the 
linear stage. Thus, it is believed that in the thermally 
exposed composite, some fibres were not well bonded 
to the matrix even in the linear stage of the stress- 
strain curve. In the non-linear stage, several possible 
micromechanical modes of deformation can be con- 
sidered, for example, plastic deformation in the matrix 
and the debonding of the fibre-matrix interface. 

Based on the above discussion, we have constructed 
two models to simulate the behaviour of the transverse 
tensile stress-strain curve. Figs 8 and 9 are the analy- 
tical models for the linear stage and non-linear stage, 
respectively, where the fibre axis is taken along the _,g 3 
axis. In the linear stage model, both the matrix and 
fibres (shaded in Fig. 8) are assumed to deform elas- 

tically, while it is assumed in the non-linear stage 
model (Fig. 9) that the fibres deform elastically 
but the matrix deforms plastically with uniform plas- 
tic strain (e, -e /2 ,  -e/2) [17, 18]. In both models 
Eshelby's equivalent inclusion method will be applied. 
A detailed description of these two models will be 
given below. 

4.1.  L inear  s tage  m o d e l  
In this model (see Fig. 8), two different types of 
inhomogeneities are embedded in an infinite matrix, 
i.e., perfectly bonded fibres (An) and debonded fibres 
(s Thus, the system of Fig. 8 can be considered as 
a hybrid composite. Let the elastic constants of the 
matrix and fibre ~ ' ) A  and f~B be C~ and Cijkl, respec- 
tively. The volume fractions of f~g and fib are denoted 
by fg and fB, respectively. 

Under the applied stress a ~ the average total stress 
in the matrix is given by a ~ + (a~)M [17--21] and 
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Figure 7 Vickers microhardness 
of the matrix (H~ ~ as a function 
of exposure time (t). (o) Vf = 0.3, 
(,) v~ = o.5. 

<o.q> M o ~ = Ci;ktek~ (1) 

where <au> M and ek~ are the average stress and strain 
disturbances of the matrix due to all flA and fiB, 
respectively, and < > denotes the volume averaged 
quantity. The repeated subscripts are to be summed 
over 1, 2 and 3 (this convention will be used through- 
out this paper unless otherwise noted). If a single fibre 
is introduced into the composite (D), then Eshelby's 
equivalent inclusion method [17-21] yields in D 

ao. + a~ = Cijk,(e ~ + g'k, + e i k , )  

0 0 i i* = Cim(ekl + ekl + ekt --  ekt) (2) 

where a~ and e~ are the disturbance of the stress and 
strain due to a single ~ ,  respectively, with the super- 
script i being A or B. ek~ is the corresponding eigen- 
strain which has non-vanishing components in the 
domain of this single f~ and becomes zero outside ~ .  
For the entire composite domain D the following 
relation always holds: 

0 0 0 aij = Cijktekl (3) 

With Equation 3, Equation 2 yields 

i 0 ~ " i* ao = C~kl(ekl + e'kl --  ekt) (4) 

I I a~CC#kl) 

aB(Cijkl )1 I I 
G , / . xz  

e 
) x 3 ( fibre oxis ) 

@ t 

t - -  c5;,  

o'q, 
q 

Figure 8 Analytical model for the linear stage. 
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Following Eshelby [11], we have 

e~, = Sktm.e~,. in f~, (5) 

where &l=, is Eshelby's tensor which depends on C~ 
and the geometry of fl~. In our case F~A and f2 s have 
the same Skt,,,. 

By assuming that the second inhomogeneities (flu) 
are debonded fibres, we obtain [22] 

a~, + a~ = 0 (6) 

Except for Equation 6, all the equations up to Equa- 
tion 5 are also valid for f~B. Since the integral of the 
stress disturbance over the entire domain D vanishes 
[20], we obtain 

ffA B ( 1 - - f A - - f B ) ( a 0 > M  + f g (  U>aA+fs(a.~>a, = 0 

(7) 

Three unknowns ~ ,  e A*, e~* will be solved by using 
Equations 2 to 7. Once e A* and e~* are solved, we can 
compute the initial overall stiffness of the composite 
by using the equivalence of the strain energies [20, 21] 
given by 

1 ~ 0 / t  "~c ] - - 1 ~ 0  1 ~ 0 [ [ ' , 0  "1--1 1 T ~ 0 ~ A *  
2 ~ i j l . t ' i j k l )  'Jkl ~ 2 t " i j \ ~ ' i j k l ]  ff~ "~- 2 J A ' J i j r " k l  

1 1(' x 0  ~B* 
+ ~JB~'O~kt (8) 

where 0 -1 (C•kt) and (C~ki)- I  are the compliances of the 
matrix and composite, respectively. The details of the 
derivation of equation 8 are described by Taya and 
Chou [20]. 

We consider here the uniaxially applied stress a ~ 
along the xl axis as shown in Fig. 8. Then the initial 
transverse Young's modulus ET of the composite can 
be obtained as 

[ .]1 
E T  1 .31 E m  A* 
Em = ~ ( f h e l l  q- fBe~l ) (9) 

where Em is the Young's modulus of the matrix and 
* B* ~1, ell are eigenstrains given by 
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Figure 9 Analytical model for the non-linear stage. 
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F A and F~ are given in Appendix A. Thus, the key 
parameters of Equation 9 are the volume fractions of 
~g (fA) and ~B (fB)- Note that fg + fB = Vr, where 
Vf is the volume fraction of  the fibres (both perfectly 
bonded and debonded fibres). 

4.2. Non- l i nea r  s t a g e  m o d e l  
As regards the non-linear stage model (see Fig. 9), 
most of  the formulae used for the linear stage model 
are also applicable to this model. As far as the com- 
putation of the total potential energy and the internal 
stress field in the composite are concerned, the model 
of  Fig. 9 is equivalent to a model in which the plastic 
strain with opposite sign is prescribed in the fibres and 
the matrix remains elastic under the applied stress o.~. 
[17, 18]. Following the model developed in earlier 
work [17, 18] we obtained the relationship between 
the transversely applied stress (O-T) and plastic strain 
(e) for the non-linear stage which is linearized as 

O'T = K,o.y + K2Ee (11) 

where K1 and K2 are functions offA andfB as described 
in Appendices A and B, and % is the yield stress of  the 
matrix which is assumed to be constant. Thus, the key 
parameters of  Equation 11 are /s and /s i.e. the 
volume fraction of  lB. It should be noted here that the 
above model (Equation 11) is valid only for the early 
part of  the non-linear stage [23], hence it is not applic- 
able for the prediction of  the fracture point of  the 
stress-strain curve. 

4.3. Estimation of fB 
In order to apply the analytical results of  Equation l 1 
to predict the early part of  the non-linear stage of  
the stress-strain curve, one must develop a micro- 
mechanical model which can relate the stress during 
transverse loading (o-T) to the bond strength of  the 
matrix-fibre interface (o.e) as well as a relationship 
betweenf~ and o-i. Before constructing such a relation- 
ship, we have first conducted a parametric study to 

obtain a series of bi-linear stress-strain curves defined 
by Equations 9 and 11 for given values of fB- The 
results are shown in Fig. 10 for the case of t = 24h 
and Vr = 0.5. In  the same figure the corresponding 
experimental results are plotted as a thick solid curve. 
Since the volume fraction of debonded fibres (fB) is 
expected to increase with an increase in the applied 
stress (O.T), the actual path of the non-linear stage of 
the stress-strain curve is to undergo a continuous 
shift from fB = 0 to increasing values of fa,  thus 
following the experimental curve (thick solid curve) in 
principle. To make the present model complete, we 
now assume that the bond strength (o.i) follows a 
three-parameter Weibull distribution given by 

m(o. i -  ~)m 1 
f( o.i) -- 

c( 

= 0 

F(o.i) = 1 - e x p (  

e x p (  (o.i - ~))rn t ~  ' (o.i >~ ]3) 

(ai < ~') 

(12) 
(o.i--@ ~))m) (O.i ~ ~)) 

(13) 
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Figure 10 Schematic diagram to correlate the volume fraction of the 
debonded fibre (fB) with the interfacial stress (ai) at Point A in 
Fig. 11, for B-A1 with Vf = 0.5. 
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Figure 11 The normal stress along the loading direction at Point A 
is set equal to the bond strength of  the f ibre-matrix interface for the 
criterion of  the debonding of  the interface. 

wheref(ai) and F(ai) are the probability density func- 
tion and cumulative distribution function of fibre- 
matrix bond strength (ai), respectively, and m, a and 
7 are called the shape parameter, scale parameter and 
location parameter, respectively. Based on the 
assumption that fB increases continuously as the 
applied stress is increased up to the failure of the 
composite, fB is set equal to F(a~) in Equation 13. 
Thus, we have computed the fibre-matrix interfacial 
stress causing the debonding at point A (see Fig. 11), 

which is equal to the fibre-matrix bond strength 
during transverse tensile loading with different expo- 
sure conditions; the results are plotted in Fig. 12, 
where Figs 12a and b denote the cases of Vr = 0.3 and 
0.5, respectively. We can now estimate the values of m 
and a from Fig. 12 and Equation 13, and they are 
found as m = 1.05, a = 91.69. 

4.4. Predict ion of s t r e s s - s t r a i n  curves  
Based on the discussion in previous sections, an 
attempt is made to obtain theoretical stress-strain 
curves. To this end, the value of 7 (which cannot be 
determined from Fig. 12) must be known. 7 is con- 
sidered to be the initial value at which the debonding 
begins to occur in the transversely tensile tested com- 
posite, and plays an important role in Fig. 12. Three 
case studies made are as follows: 

(i) 7 = 44.8 MPa (=  0.5 am., weak interface); 
(ii) 7 = 70.0 MPa (intermediate interface); 

(iii) 7 = 89.6 MPa (=  ainu, strong interface). 

The probability density function of the bond 
strength,f(ai), and Equation 12 for the above value of 

are shown in Fig. 13, where the values of the bond 
strength beyond 260MPa are not adopted for the 
present analysis because the fracture mode of the 
transversely tested composite is supposed to change 
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Figure 12 Correlation between volume 
fraction of  the debonded fibre (fB) and the 
interfacial stress (a~) at Point A in Fig. 11, 
for B A1 with (a) Vf=  0.3: (e)  as- 
fabricated (? = 73.0); (13) I h (? = 45.5); 
(zx) 8h (~ = 34.5); (O) 24h @ = 72.0); 
(11) 72h (7 = 72.5). (b) Vf = 0.5: (o) as- 
fabricated (7 = 67.8); (13) 1 h (7 = 51.5); 
(zx) 8 h (7 = 49.0); (o)  24h (7 = 68.5); (11) 
72h (7 = 81.5). 
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strain behaviour. Compar ison 

between ( -  ) theory and ( ) 
experiment; for t = 24 h where in 
the theory 7 = 70 MPa was used. 

from interfacial debonding to fibre splitting. Accord- 
ing to Adams [5], the fibre splitting occurs at this 
stress. Hence, if the normal stress along the x~ axis at 
point A (Fig. 11) exceeds 260 MPa, the fibre splitting 
mode is assumed to take place in our analysis. 

Based on Eshelby's model and Equation 12 and 
13 we have predicted the stress-strain curves for 

= 44.8, 70.0 and 89.6 MPa, and the results are plot- 
ted as dashed curves for Vf = 0.3 and 0.5 in Figs 14a 
and b, respectively, where the experimental results are 
also shown as solid curves. In Fig. 14 the fracture 
points of the experimental curves are denoted by 
various symbols corresponding to the various expo- 
sure times (see caption). It follows from Fig. 14 that 
is strongly related to the initial interfacial bond 
strength. Thus it can be concluded that the longer the 
exposure time is, the stronger the interfacial bond 
becomes, except for the case of as-fabricated com- 
posite where the interfacial bond is considered strong 
as described in the previous section. To examine the 
effect of the volume fraction of fibre, Vf, on the 
stress-strain curve of the thermally exposed com- 
posite, we have applied the present model to the case 
of t = 24 h and V = 70 MPa and the results are plot- 
ted as dashed curves in Fig. 15, where the correspond- 
ing experimental results are also plotted as solid 
curves. It can be seen from Figs 14 and 15 that reason- 
ably good agreement between the analytical and 
experimental results is obtained except for the fracture 
point. 

5. Conclusions 
The effect of isothermal exposure time at 500 ~ C on the 
transverse mechanical properties and stress-strain 
behaviour of 30 and 50 vol % continuous boron fibre 
reinforced 1100 composites has been investigated 
experimentally. 

Theoretical considerations using Eshelby's theory 
have then been made to predict the non-linearity of 
the stress-strain behaviour. This investigation led to 
the following conclusions: 

4 2 7 8  

1. The fibre-matrix interfacial reaction gives rise to 
an increase of the fibre matrix bond strength. Conse- 
quently, the fracture mode undergoes a transition 
from interfacial debonding to fibre splitting with 
increasing exposure time. 

2. The initial transverse Young's modulus of a 
continuous fibre reinforced metal matrix composite is 
well predicted using Eshelby's theory and is almost 
independent of the isothermal exposure condition. 

3. Stress-strain behaviour depends on the iso- 
thermal exposure condition, and the curve tends to 
rise with increasing fibre-matrix bond strength result- 
ing from the fibre-matrix reaction. 

4. The non-linearity of the transverse tensile 
stress-strain behaviour can be explained qualitatively 
by the present theoretical model, and reasonable 
agreement between theory and experiment is obtained. 

5. In order to predict the ultimate transverse tensile 
strength of a continuous fibre reinforced metal matrix 
composite as well as its fracture strain, further con- 
sideration is required. 
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Appendix A 
F[1, F~1, F~I, F~3, F~3 and F~3 in Equations 10 and B2 
are defined by 

1 [(B~C~ - B~C2A)D, + (B~C~  FA = -~A 

-- B ~ C r  2 + (B~C~ -- BACIh)D2] 

1 
FA = ~AA [(AAcA - -  A A C A ) D '  + ( A A c A  
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= 

= 

= 

F3• 
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A A 
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A~ = I(1 - f i ) ( S l l l l  + $3311 ) 

+ ( i  + 2/])(1 - f )S= l ,  + (Zf  + 2) 

B~ = 1(1 - f3(81,= + 83322) 

+ ( I  + 2#)(1 - f ) S = 2 :  
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In Equations A3 and A6, superscript and subscript i 
denote A (for s or B (for ~B). 

i = 2 f - -  ~ m 
(A7) 

/] = ] ~ f -  ]-/m 

D1 = - [I(1 -- 2i'm) + 2/]] 
(AS) 

D 2 ---- 2/]i '  m - -  i(1 - 2Vm) 

where 2j and #j are Lame's constants of the i phase 
( j  = m and f), and Em and Vm are Young's modulus 
and Poisson's ratio of  the matrix, respectively; S~kt is 
Eshelby's tensor [21]. 

A p p e n d i x  B 
K1 and K 2 in Equation l 1 are given by 

1 - ( A  + UB) 
Kx = 

1 - ( f g  + U B )  -- ( LA + L~) 

L~ - L A (B1) 
g : =  

1 - (fA + fB) -- ( LA + L~)  

where with Equations A1 and A2, L I and L~ (i = m 
and f) are given as 

L'I = f~(1 - f 3 ( G , F ~  + G:F~I + G3F~I) 
(B2) 

L~ = f (1  --fi)(GiF[3 Jr- GzF~3 + G3F~3) 

where G1, G2 and G3 are defined by Equation A9 as 
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